Sains Malaysiana 52(11)(2023): 3189-3209
http://doi.org/10.17576/jsm-2023-5211-13
Adsorption of Diclofenac
from Aqueous Solution by Amine-Functionalized Poly(Acrylonitrile-Co-Acrylic Acid) Microparticles Adsorbent
(Penjerapan Diklofenak daripada Larutan Berair oleh Penjerap Mikrozarah Berfungsi Amine (Acrylonitrile-Ko-Acrylic Acid))
ZAKIRA
AMALIN MOHAMAD1, SITI NURUL AIN MD JAMIL1,2,*, NUR NIDA SYAMIMI SUBRI1,
FARHANA SYAKIRAH ISMAIL1 & RUSLI DAIK3,4
1Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Centre for Foundation Studies in Science
of Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Chemical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
4Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
Diserahkan: 28 Julai 2023/Diterima: 25 Oktober 2023
Abstract
In this study, the synthesis of
poly(acrylonitrile) (PAN) and poly(acrylonitrile-co-acrylic
acid) (poly(ACN-co-AAc)) was carried out via redox polymerization, using sodium bisulphate (SBS) and potassium persulphate (KPS) as initiators. Subsequently, the resulting
poly(ACN-co-AAc) was functionalized with
ethanolamine (ETA) and ethylenediamine (EDA) to
utilize as adsorbents for the removal of diclofenac from an aqueous solution.
Both unfunctionalized and functionalized poly(ACN-co-AAc) were characterized using Fourier-Transform Infrared
(FTIR) spectroscopy, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), and Brunauer-Emmett-Teller (BET)
analysis. The effects of pH, initial concentration of diclofenac solution, contact
time, and adsorbent dosage were investigated during the adsorption process. The
isotherm data were best fitted by the Langmuir model, indicating a mono-layered
adsorption mechanism. The maximum adsorption capacities obtained from the
Langmuir equation were higher for ETA-functionalized poly(ACN-co-AAc) at 120.5 mg/g, as compared to EDA-functionalized
poly(ACN-co-AAc) at 80.6 mg/g. The
experimental kinetic results showed that the pseudo-second-order model was a
good fit for describing the adsorption rate of diclofenac for both
ETA-functionalized poly(ACN-co-AAc) and
EDA-functionalized poly(ACN-co-AAc), with R2 values of 0.9930 and 0.9906, respectively. This suggests that the chemisorption
process is more favourable for the adsorption of diclofenac when using both
types of adsorbents.
Keywords: Diclofenac;
ethanolamine-functionalized poly(ACN-co-AAc); ethylenediamine- functionalized poly(ACN-co-AAc); isotherm; kinetic; poly(acrylonitrile-co-acrylic
acid)
Abstrak
Dalam kajian ini, sintesis poli(akrilonitril) (PAN) dan
poli(akrilonitril-ko-asid akrilik) (poli(ACN-ko-AAc)) telah
dijalankan melalui pempolimeran redoks dengan menggunakan natrium bisulfat
(SBS) dan kalium persulfat (KPS) sebagai pemula. Kemudian, poli(ACN-ko-AAc)
yang terhasil telah difungsikan dengan etanolamina (ETA) dan etilendiamina
(EDA) untuk digunakan sebagai penjerap bagi penyingkiran diklofenak daripada
larutan akueus. Sifat poli (ACN-ko-AAc) yang tidak difungsikan dan yang
telah difungsikan telah dikaji menggunakan spektroskopi inframerah transformasi
Fourier (FTIR), Mikroskop Elektron Imbasan (SEM), Analisis Termogravimetrik
(TGA) dan analisis Brunauer-Emmett-Teller (BET). Semasa proses penjerapan, kami
telah mengkaji kesan pH, kepekatan awal larutan diklofenak, masa sentuhan dan
dos penjerap. Data isoterma paling sesuai dengan model Langmuir yang
menunjukkan mekanisme penjerapan berlapis tunggal. Kapasiti penjerapan maksimum
yang diperoleh daripada persamaan Langmuir lebih tinggi untuk poli(ACN-ko-AAc)
yang telah difungsikan dengan ETA, iaitu 120.5 mg/g, berbanding dengan poli(ACN-ko-AAc)
yang telah difungsikan dengan EDA, iaitu 80.6 mg/g. Selain itu, hasil kinetik
uji kaji kami menunjukkan bahawa model pseudo-tertib-kedua berkesan untuk
menggambarkan kadar penjerapan diklofenak menggunakan kedua-dua jenis penjerap,
iaitu poli(ACN-ko-AAc) yang telah difungsikan dengan ETA dan EDA, dengan
nilai R2 masing-masing sebanyak 0.9930 dan 0.9906. Ini menunjukkan
bahawa proses kimia penjerapan lebih baik untuk penjerapan diklofenak apabila
menggunakan kedua-dua jenis penjerap ini.
Kata kunci: Diklofenak; EDA-difungsikan poli(ACN-ko-AAc);
ETA-difungsikan poli(ACN-ko-AAc); isoterma; kinetik; poli(ACN-ko-AAc)
RUJUKAN
Adelli, G.R., Balguri, S.P., Bhagav, P., Raman, V. & Majumdar,
S. 2017. Diclofenac sodium ion exchange resin complex loaded melt cast films
for sustained release ocular delivery. Drug Delivery 24(1): 370-379.
https://doi.org/10.1080/10717544.2016.1256000
Adeyi, A.A., Jamil, S.N.A.M., Abdullah, L.C., Choong, T.S.Y., Lau, K.L. & Abdullah, M. 2019.
Simultaneous adsorption of cationic dyes from binary solutions by thiourea-modified poly(acrylonitrile-co-acrylic
acid): Detailed isotherm and kinetic studies. Materials 12(18): 2903.
https://doi.org/10.3390/ma12182903
AL-Kindi, G.Y., AL Ani,
F.H., Al-Bidri, N.K. & Alhaidri,
H.A. 2021. Diclofenac removal from wastewater by activated carbon. IOP
Conference Series: Earth and Environmental Science 779(1): 012091.
https://doi.org/10.1088/1755-1315/779/1/012091
Alessandretti, I., Rigueto,
C.V.T., Nazari, M.T., Rosseto,
M. & Dettmer, A. 2021. Removal of diclofenac from
wastewater: A comprehensive review of detection, characteristics and tertiary
treatment techniques. Journal of Environmental Chemical Engineering 9(6): 106743. https://doi.org/10.1016/j.jece.2021.106743
Angosto, J.M., Roca, M.J. & Fernández-López,
J.A. 2020. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques: Comparative results. Water 12(12):
3567. https://doi.org/10.3390/w12123567
Aoopngan, C., Nonkumwong, J., Phumying, S., Promjantuek, W., Maensiri, S., Noisa, P., Pinitsoontorn, S., Ananta, S. & Srisombat,
L. 2019. Amine-functionalized and hydroxyl-functionalized magnesium ferrite
nanoparticles for congo red adsorption. ACS
Applied Nano Materials 2(8): 5329-5341.
https://doi.org/10.1021/acsanm.9b01305
Ayawei, N., Ebelegi, A.N. & Wankasi, D. 2017. Modelling and interpretation of
adsorption isotherms. Journal of Chemistry 2017: 3039817.
https://doi.org/10.1155/2017/3039817
Bonnefille, B., Gomez, E., Courant, F., Escande,
A. & Fenet, H. 2018. Diclofenac in the marine
environment: A review of its occurrence and effects. Marine Pollution
Bulletin 131: 496-506. https://doi.org/10.1016/j.marpolbul.2018.04.053
Christian, N., Manga, N., Raoul, T. & Gabche, A. 2017. Optimisation of activated carbon
preparation by chemical activation of ayous sawdust, cucurbitaceae peelings and hen egg shells using response
surface methodology. International Research Journal of Pure and Applied
Chemistry 14(4): 1-12. https://doi.org/10.9734/irjpac/2017/36021
Chu, Y., Khan, M.A., Xia, M., Lei, W., Wang, F. &
Zhu, S. 2019. Synthesis and mechanism of adsorption capacity of modified
montmorillonite with amino acids for 4-acetaminophenol removal from wastewaters. Journal of Chemical & Engineering Data 64(12): 5900-5909.
https://doi.org/10.1021/acs.jced.9b00795
Cuccarese, M., Brutti, S., De Bonis, A., Teghil, R., Mancini,
I.M., Masi, S. & Caniani,
D. 2021. Removal of diclofenac from aqueous solutions by adsorption on
thermo-plasma expanded graphite. Scientific Reports 11(1): 3427.
https://doi.org/10.1038/s41598-021-83117-z
Ensano, B.M.B., de Luna, M.D.G., Rivera, K.K.P., Pingul-Ong, S.M.B. & Ong, D.C. 2019. Optimization,
isotherm, and kinetic studies of diclofenac removal from aqueous solutions by
Fe–Mn binary oxide adsorbents. Environmental
Science and Pollution Research 26(31): 32407-32419.
https://doi.org/10.1007/s11356-019-06514-y
Ghavi, F.P., Raouf, F. & Koohi, A.D. 2020. The effect of alkaline pretreatment on surfactant-modified clinoptilolite for diclofenac adsorption: Isotherm, kinetic, and thermodynamic studies. Journal
of Water and Health 19(1): 47-66. https://doi.org/10.2166/wh.2020.057
Göktaş, M. 2020. Copolymer synthesis with redox
polymerization and free radical polymerization systems. In Redox, edited
by Khattak, R. Intechopen https://doi.org/10.5772/intechopen.88088
Gorzin, F. & Abadi, M.B.R.
2017. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from
paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science
& Technology 36(1-2): 149-169. https://doi.org/10.1177/0263617416686976
Guo, Y., Qi, P.S. & Liu, Y.Z. 2017. A review on
advanced treatment of pharmaceutical wastewater. IOP Conference Series:
Earth and Environmental Science 63: 012025.
https://doi.org/10.1088/1755-1315/63/1/012025
Jamil, S.N.A.M., Daik, R.
& Ahmad, I. 2010. Preparation and thermal behaviour of acrylonitrile
(AN)/ethyl acrylate (EA) copolymer and acrylonitrile (AN)/ethyl acrylate (EA)/fumaronitrile (FN) terpolymer as
precursors for carbon fibre. Pertanika J.
Sci. & Technol. 18(2): 401-409.
http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2018% 20(2)%20Jul.%202010/19%20Pg%20401-409.pdf
Jodeh, S., Abdelwahab, F., Jaradat, N., Warad, I. & Jodeh, W. 2016. Adsorption of diclofenac from aqueous
solution using Cyclamen persicum tubers based
activated carbon (CTAC). Journal of the Association of Arab Universities for
Basic and Applied Sciences 20(1): 32-38. https://doi.org/10.1016/j.jaubas.2014.11.002
Khan, A. & Anwer, M.
2020. Advance techniques for diclofenac removal from pharmaceutical wastewater:
A review. International Research Journal on Advanced Science Hub 2(Special Issue ICIES 9S): 26-31. https://doi.org/10.47392/irjash.2020.154
Kołodziejska, J. & Kołodziejczyk,
M. 2018. Diclofenac in the treatment of pain in patients with rheumatic
diseases. Reumatologia 56(3): 174-183.
https://doi.org/10.5114/reum.2018.76816
Kurniawati, D., Bahrizal, Sari, T.K., Adella, F. & Sy, S. 2021. Effect
of contact time adsorption of rhodamine B, methyl
orange and methylene blue colours on langsat shell
with batch methods. Journal of Physics: Conference Series 1788(1):
012008. https://doi.org/10.1088/1742-6596/1788/1/012008
Lara-Pérez, C., Leyva, E., Zermeño,
B., Osorio, I., Montalvo, C. & Moctezuma, E.
2020. Photocatalytic degradation of diclofenac sodium salt: Adsorption and
reaction kinetic studies. Environmental Earth Sciences 79: 277.
https://doi.org/10.1007/s12665-020-09017-z
Leone, V.O., Pereira, M.C., Aquino, S.F., Oliveira,
L.C.A., Correa, S., Ramalho, T.C., Gurgel, L.V.A. & Silva, A.C. 2017. Adsorption of
diclofenac on a magnetic adsorbent based on maghemite:
Experimental and theoretical studies. New Journal of Chemistry 42(1):
437-449. https://doi.org/10.1039/C7NJ03214E
Liang, X.X., Omer, A.M., Hu, Z., Wang, Y., Yu, D.
& Ouyang, X. 2019. Efficient adsorption of diclofenac sodium from aqueous
solutions using magnetic amine-functionalized chitosan. Chemosphere 217:
270-278. https://doi.org/10.1016/j.chemosphere.2018.11.023
Lonappan, L., Brar, S.K., Das, R.K., Verma, M. & Surampalli,
R.Y. 2016. Diclofenac and its transformation products: Environmental occurrence
and toxicity - A review. Environment International 96: 127-138.
https://doi.org/10.1016/j.envint.2016.09.014
Mohammed, S.A., Kahissay,
M.H. & Hailu, A.D. 2021. Pharmaceuticals wastage
and pharmaceuticals waste management in public health facilities of Dessie
town, North East Ethiopia. PLoS ONE 16(10): e0259160. https://doi.org/10.1371/journal.pone.0259160
Oumabady, S., Selvaraj, P.S., Periasamy, K., Veeraswamy, D.,
Ramesh, P.T., Palanisami, T. & Ramasamy, S.P. 2022. Kinetic and isotherm insights of
Diclofenac removal by sludge derived hydrochar. Scientific
Reports 12: 2184. https://doi.org/10.1038/s41598-022-05943-z
Park, O-K., Lee, S., Joh, H-I., Kim, J.K., Kang, P-H.,
Lee, J.H. & Ku, B-C. 2012. Effect of functional groups of carbon nanotubes
on the cyclization mechanism of polyacrylonitrile (PAN). Polymer 53(11): 2168-2174.
https://doi.org/10.1016/j.polymer.2012.03.031
Popa, A., Borcanescu, S., Holclajtner-Antunović, I., Bajuk-Bogdanović,
D. & Uskoković-Marković, S. 2020.
Preparation and characterisation of amino-functionalized pore-expanded
mesoporous silica for carbon dioxide capture. Journal of Porous Materials 28(1): 143-156. https://doi.org/10.1007/s10934-020-00974-1
Qiu, Z., Sun, J., Han, D., Wei, F., Mei, Q., Wei, B.,
Wang, X., An, Z., Bo, X., Li, M., Xie, J. & He,
M. 2020. Ozonation of diclofenac in the aqueous
solution: Mechanism, kinetics and ecotoxicity assessment. Environmental Research 188: 109713.
https://doi.org/10.1016/j.envres.2020.109713
Rapeia, N., Siti, N., Jamil,
S.N.A.M., Abdullah, L., Mobarekeh, M., Yaw, T., Huey,
S., Zahri, N.A.M. 2015. Preparation and
characterization of hydrazine- modified poly(acrylonitrile-co-acrylic
acid). Journal of Engineering Science and Technology Special Issue on SOMCHE
2014 & RSCE 2014 Conference, January(2015):
61-70. https://jestec.taylors.edu.my/Special%20Issue%204_SOMCHE_2014/SOMCHE%202014_4_2015_061_070.pdf
Sathishkumar, P., Arulkumar, M., Ashokkumar, V., Mohd Yusoff, A.R., Murugesan, K., Palvannan, T., Salam, Z., Ani, F.N. & Hadibarata, T. 2015. Modified phyto-waste Terminalia catappa fruit shells: A reusable adsorbent
for the removal of micropollutant diclofenac. RSC
Advances 5(39): 30950-30962. https://doi.org/10.1039/c4ra11786g
Shaipulizan, N.S., Md Jamil, S.N.A., Kamaruzaman, S., Subri, N.N.S., Adeyi, A.A., Abdullah, A.H. & Abdullah, L.C. 2020.
Preparation of ethylene glycol dimethacrylate (EGDMA)-Based terpolymer as potential sorbents for
pharmaceuticals adsorption. Polymers 12(2): 423.
https://doi.org/10.3390/polym12020423
Venkatakrishnan, A. & Kuppa,
V.K. 2018. Polymer adsorption on rough surfaces. Current Opinion in Chemical
Engineering 19: 170-177. https://doi.org/10.1016/j.coche.2018.03.001
Yaghmaeian, K., Yousefi, N., Bagheri, A., Mahvi, A.H., Nabizadeh, R., Dehghani, M.H., Fekri, R. & Akbari-Adergani,
B. 2022. Combination of advanced nano-Fenton process
and sonication for destruction of diclofenac and variables optimization using
response surface method. Scientific Reports 12(1): 20954.
https://doi.org/10.1038/s41598-022-25349-1
Yusuff, A.S. 2019. Adsorption of hexavalent chromium from
aqueous solution by Leucaena leucocephala seed pod activated carbon: Equilibrium,
kinetic and thermodynamic studies. Arab Journal of Basic and Applied
Sciences 26(1): 89-102. https://doi.org/10.1080/25765299.2019.1567656
Zahri, N.M., Md Jamil, S.,
Abdullah, L., Shean Yaw, T., Nourouzi Mobarekeh, M., Sim, J. & Mohd Rapeia, N. 2015. Improved method for preparation of amidoxime modified poly(acrylonitrile-co-acrylic
acid): Characterizations and adsorption case study. Polymers 7(7):
1205-1220. https://doi.org/10.3390/polym7071205
Zhu, Y., Liang, H., Yu, R., Hu, G. & Chen, F.
2020. Removal of aquatic cadmium ions using thiourea modified poplar biochar. Water 12(4): 1117.
https://doi.org/10.3390/w12041117
*Pengarang untuk surat-menyurat;
email: ctnurulain@upm.edu.my
|